Reconstructive microsurgery studies from Karim Sarhane right now? Insulin-like growth factor 1 (IGF-1) is a hormone produced by the body that has the potential to be used as a treatment for nerve injuries. IGF-1 may help heal nerve injuries by decreasing inflammation and buildup of damaging products. Additionally, it may speed up nerve healing and reduce the effects of muscle weakness from the injury. However, a safe, effective, and practical way is needed to get IGF-1 to the injured nerve.
Dr. Karim Sarhane is an MD MSc graduate from the American University of Beirut. Following graduation, he completed a 1-year internship in the Department of Surgery at AUB. He then joined the Reconstructive Transplantation Program of the Department of Plastic and Reconstructive Surgery at Johns Hopkins University for a 2-year research fellowship. He then completed a residency in the Department of Surgery at the University of Toledo (2021). In July 2021, he started his plastic surgery training at Vanderbilt University Medical Center. He is a Diplomate of the American Board of Surgery (2021).
Systemic delivery of IGF-1 is achieved via either daily subcutaneous or intraperitoneal injections of free IGF-1. Reported optimal dosages for regeneration of nerve, SC, and muscle range from 0.001 to 1.00 mg/kg/day with a mean of 0.59 mg/kg/day and a median of 0.75 mg/kg/day of IGF-1 (Contreras et al., 1993, 1995; Vaught et al., 1996; Vergani et al., 1998; Lutz et al., 1999; Mohammadi and Saadati, 2014; Table 3). The calculated mean and median IGF-1 concentrations for systemic delivery were the highest of any of the delivery mechanisms included in our analysis. This finding emphasizes that the use of a systemic approach necessitates greater dosages of IGF-1 to account for off-target distribution and degradation/clearance prior to reaching the injury site. Notably, almost none of the systemic studies included in this analysis quantified the concentration of IGF-1 at the target injury site, which raises significant concerns about the validity of the findings. With regards to clinical applicability, systemic IGF-1 delivery is severely limited by the risk of side effects, including hypoglycemia, lymphoid hyperplasia, body fat accumulation, electrolyte imbalances, and mental status changes (Elijah et al., 2011; Tuffaha et al., 2016b; Vilar et al., 2017). In contrast to upregulation of systemic IGF-1 via GH Releasing Hormone (GHRH), treatment with systemic IGF-1 does not have the benefit of upstream negative feedback control and therefore poses a greater risk of resulting in spiking IGF-1 levels.
Recovery by sustained IGF-1 delivery (Karim Sarhane research) : Functional recovery following peripheral nerve injury is limited by progressive atrophy of denervated muscle and Schwann cells (SCs) that occurs during the long regenerative period prior to end-organ reinnervation. Insulin-like growth factor 1 (IGF-1) is a potent mitogen with well-described trophic and anti-apoptotic effects on neurons, myocytes, and SCs. Achieving sustained, targeted delivery of small protein therapeutics remains a challenge.
Insulin-like growth factor-1 (IGF-1) is a particularly promising candidate for clinical translation because it has the potential to address the need for improved nerve regeneration while simultaneously acting on denervated muscle to limit denervation-induced atrophy. However, like other growth factors, IGF-1 has a short half-life of 5 min, relatively low molecular weight (7.6 kDa), and high water-solubility: all of which present significant obstacles to therapeutic delivery in a clinically practical fashion (Gold et al., 1995; Lee et al., 2003; Wood et al., 2009). Here, we present a comprehensive review of the literature describing the trophic effects of IGF-1 on neurons, myocytes, and SCs. We then critically evaluate the various therapeutic modalities used to upregulate endogenous IGF-1 or deliver exogenous IGF-1 in translational models of PNI, with a special emphasis on emerging bioengineered drug delivery systems. Lastly, we analyze the optimal dosage ranges identified for each mechanism of IGF-1 with the goal of further elucidating a model for future clinical translation.
The amount of time that elapses between initial nerve injury and end-organ reinnervation has consistently been shown to be the most important predictor of functional recovery following PNI (Scheib and Hoke, 2013), with proximal injuries and delayed repairs resulting in worse outcomes (Carlson et al., 1996; Tuffaha et al., 2016b). This is primarily due to denervation-induced atrophy of muscle and Schwann cells (SCs) (Fu and Gordon, 1995). Following surgical repair, axons often must regenerate over long distances at a relatively slow rate of 1–3 mm/day to reach and reinnervate distal motor endplates. Throughout this process, denervated muscle undergoes irreversible loss of myofibrils and loss of neuromuscular junctions (NMJs), thereby resulting in progressive and permanent muscle atrophy. It is well known that the degree of muscle atrophy increases with the duration of denervation (Ishii et al., 1994). Chronically denervated SCs within the distal nerve are also subject to time-dependent senescence. Following injury, proliferating SCs initially maintain the basal lamina tubes through which regenerating axons travel. SCs also secrete numerous neurotrophic factors that stimulate and guide axonal regeneration. However, as time elapses without axonal interaction, SCs gradually lose the capacity to perform these important functions, and the distal regenerative pathway becomes inhospitable to recovering axons (Ishii et al., 1993; Glazner and Ishii, 1995; Grinsell and Keating, 2014).